

Specialized Hardware Supplement

to the

Software Communication Architecture (SCA) Specification

JTRS-5000 SP
V3.0

27 August 2004

Prepared by the
Joint Tactical Radio System (JTRS) Joint Program Office

Contributions made through
Workshop on SCA Extensions

To support Signal Processing Subsystem
29-30 April 2004

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0

Revision Summary

3.0 Formal release for initial validation.

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
Table of Contents

1 INTRODUCTION.. 1-1
1.1 Scope of Specialized Hardware Supplement ...1-1
1.2 Reference Documents...1-1

2 HAL CONNECTIVITY (HAL-C) .. 2-1
2.1 Definitions ...2-1
2.2 Scope of HAL-C..2-2
2.3 HAL-C Model ...2-3
2.4 HAL-C API ...2-4

2.4.1 HAL-C for Processing Elements supporting a C runtime............................2-4
2.4.1.1 Description. ..2-4
2.4.1.2 UML. ..2-4
2.4.1.3 Types. ...2-4
2.4.1.4 Attributes..2-4
2.4.1.5 Operations. ...2-5
2.4.1.6 HAL-C Infrastructure Behavior ...2-8

2.4.2 HAL-C for FPGAs ...2-8
2.4.2.1 Description ...2-8
2.4.2.2 HAL-C Infrastructure Behavior ...2-10
2.4.2.3 FPGA Layout ...2-10
2.4.2.4 Flow Control ..2-11
2.4.2.5 Data bus width..2-11
2.4.2.6 HAL-C Components ..2-11

3 OS SERVICE APIS FOR DSP ENVIRONMENT.................................... 3-1
3.1 Purpose and Scope ...3-1
3.2 OS Service APIs for DSP Environment Requirements3-2

4 WAVEFORM FUNCTIONAL BLOCKS.. 4-1
4.1 Purpose and Scope ...4-1
4.2 Standard Modulation Blocks...4-1

4.2.1 Cyclic Code Shift Keying ..4-1
4.2.2 Continuous Phase Modulation ...4-2

4.3 Standard Coding Blocks ..4-2
4.3.1 Turbo Encoder/Decoder ...4-3
4.3.2 Reed-Solomon Encoder-Decoder...4-3
4.3.3 Convolutional Encoder...4-4
4.3.4 Viterbi Decoder ..4-5

4.4 Waveform Functions for Potential Standardization.......................................4-5

5 ANTENNA SUBSYSTEM API.. 5-1
5.1 Purpose and Scope ...5-1
5.2 Antenna API ...5-1

i

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
5.2.1 Antenna Control API..5-2
5.2.2 SCA Device Support for Antenna Control API ...5-5
5.2.3 Real-Time Antenna Control API..5-6

APPENDIX A: HAL-C API ..A-1

List of Figures

Figure 1: HAL-C Model ..2-3
Figure 2: Source Interface Definition...2-9
Figure 3: Sink Interface Definition...2-9
Figure 4: FPGA Layout ...2-10
Figure 5: An HC Implementation...2-1
Figure 6: OS Services...3-2
Figure 7: Cyclic Code Shift Keying ..4-1
Figure 8: Cyclic Continuous Phase Modulation..4-2
Figure 9: Turbo Encoder/Decoder..4-3
Figure 10: Reed-Solomon Encoder-Decoder ...4-4
Figure 11: Convolutional Encoder..4-4
Figure 12: Viterbi Decoder..4-5
Figure 13: Positioning of Antenna API ..5-2
Figure 14: Antenna Command and Control UML diagram......................................5-3

List of Tables

Table 1: Required Standards ..3-2
Table 2: POSIX.1b Option Requirements ...3-3
Table 3: POSIX.1c Option Requirements..3-3
Table 4: Standard Modulation Blocks ...4-6
Table 5: Standard Coding Blocks ...4-6

ii

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0

1 INTRODUCTION
The Specialized Hardware Supplement (SHS) to the JTRS Software Communication
Architecture (SCA) Specification specifies how to improve portability of software for
processing elements other than general purpose processors. This supplement specifies:
• A Hardware Abstraction Layer Connectivity (HAL-C) specification,
• A reduced POSIX AEP for DSP environments,
• Waveform functional blocks to be provided as part of each radio set, and
• An Application Interface for antenna interfaces.

1.1 SCOPE OF SPECIALIZED HARDWARE SUPPLEMENT
This document supplements the SCA Specification by specifically addressing the
software for specialized hardware (Field Programmable Gate Arrays (FPGA) and Digital
Signal Processors (DSP) and Application Specific Integrated Circuits (ASIC)). The
requirements in this supplement are intended to reduce the cost of portability by
mitigating a set of problems for this type of software. These problems include the lack of
standard operating systems in DSPs and the differing computational paradigms of DSPs,
FPGAs, ASICs, network processors and other special function devices.

This supplement applies to non-CORBA components executing on Specialized
Hardware. It does not change any requirements in the main Software Communications
Architecture (SCA) specification and relies on non-CORBA components being deployed
in accordance with the SCA.

While this supplement specifically addresses DSPs, FPGAs, and ASICs, it is intended to
be generic enough to apply to emerging hardware such as computing grids, network
processors, special function devices, and partially reconfigurable FPGAs.

All requirements are indicated by the word “shall”. If no “shall” appears in a sentence, it
is not a requirement.

1.2 REFERENCE DOCUMENTS
The Open Group, ISO/IEC 9899:1990, "Programming languages - C"

Object Management Group, final dtc/04-05-04, “PIM and PSM for Software Radio
Components Final Adopted Specification”

The Open Group, ISO/IEC 9945-1:1996 Information technology – “Portable Operating
System Interface (POSIX) - Part 1: System Application Programming Interface (API) [C
Language]” {includes 1, 1b and 1c}

IEEE Std 1003.5c-1996
IEEE Standard for Information Technology, “Information Technology - POSIX - Ada
Language Interfaces - Part 1: Binding for System Application Program Interface -
Amendment 1: Realtime Extensions”

1-1

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0

2 HAL CONNECTIVITY (HAL-C)
The Hardware Abstraction Layer Connectivity (HAL-C) specifies a hardware platform-
independent means for communication between software components running on
specialized hardware.

The amount of waveform-specific software running on special purpose hardware is
increasing as JTRS grows to cover high-rate waveforms such as those operating above 2
GHz. Currently, the software components running on special-purpose hardware use JTR
Set-specific mechanisms to communicate. The choice of communication mechanism
fundamentally affects the software design. For example:

a) The API used to exchange control and data messages determines whether the
software component is always running or whether it performs some computation
and then halts until a new message arrives.

b) The choice of connection-oriented vs. connectionless communications determines
the overall system structure. Connection-oriented mechanisms require fixed data
flows, link initialization, and unique addresses. Connectionless communication
mechanisms allow more random communication patterns.

c) Use of different APIs for different physical transports between software
components allows and encourages specialization of the software design to the
layout of the components on a particular hardware platform.

The HAL-C specifies a communications API and thereby minimizes the effect of the
hardware platform’s communication mechanisms on the software design. This reduces
the probability of significant component rewrites during porting.

Overall lifecycle costs are also reduced by specifying a high-level abstraction API that
isolates the waveform-specific software from the radio set-specific software.

2.1 DEFINITIONS
A processing element (PE) is a hardware component capable of performing
computational functions and making decissions based on prior state. A general-purpose
processor is a PE, as are a DSP, FPGA, ASIC, or other specialized hardware devices. In
this document, the term CORBA-enabled PE will be used whenever referring to any PE
that offers a CORBA implementation and is therefore capable of supporting SCA
operations. The term PE by itself refers to a hardware component that does not support
CORBA and cannot issue or implement SCA API calls directly.

A HAL-C Component (HC) is a component that performs processing functions as part of
a waveform implementation. Many HCs may run on a given PE. Normally HCs are
software written by the waveform developer and hosted on the target radio set. However,
in some cases HCs may be software or hardware that is provided by the hardware
platform developer. An example is a hardware accelerator for a turbo decoder. In this
document, the term HC by itself refers to a functional component that cannot issue or
receive CORBA calls directly because it is hosted on a PE that does not support CORBA.

2-1

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
The HAL-C Infrastructure is software that realizes the HAL-C APIs and enables the
transfer of data between endpoints.

In this supplement, the term platform has several meanings depending upon context.
Hardware platform is used to refer to the set of PEs on which software will execute.
Radio set platform is used when the context indicates that the Hardware platform is a
radio (e. g., in reference to an antenna or waveform). Unmodified platform is used to
refer to an object in which the radio set is to be imbedded (e. g., an airplane or satellite)

2.2 SCOPE OF HAL-C
HAL-C specifies the following:

a) A flexible, scalable abstraction that can be implemented on different hardware
architectures and hardware platforms.

b) A method and API by which HCs can efficiently interface with HCs on other PEs
(location-transparent) via high-speed transport mechanisms provided by the
hardware platform. Note, because HAL-C is location-transparent it also supports
interfacing two HCs on the same PE.

c) A method for the connectivity between HCs to be specified externally rather than
compiled into the HCs. (For example, by a SAD file in the current SCA).

HAL-C has no effect on the SCA requirements that apply to components running on
CORBA-enabled PEs. HAL-C only applies to HCs loaded on special purpose hardware.

HAL-C does not currently specify the mechanisms used to establish the connectivity
between HCs based on an external specification such as the SCA SAD file. Since Both
the core framework and the HAL-C Infrastructure are specific to the radio set, there is no
need to restrict the manner in which the core framework configures the HAL-C
Infrastructure. If desired, common initialization mechanism could be specified by future
extensions to the HAL-C.

HAL-C is designed to enable redirection of flows by sophisticated implementations. This
allows JTR sets to exploit this capability to dynamically allocate resources on waveform
startup from a pool of available PEs as well.

Redirection of flows and reallocation may also be useful for fault tolerance and Quality
of Service features. The current HAL-C specification does not support initiation of these
operations by waveforms, but rather by the hardware platform. HAL-C has been designed
to allow for extension to support features such as channel unbinding and binding and
flow stopping and starting, which will be needed to standardize the way a waveform
reallocates its resources.

2-2

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
2.3 HAL-C MODEL

HC2
Random
Interface

(Direct, PCI,
RapidIO, etc.)

HC3

DSP

Waveform Dependent

HC1

Platform Dependent

HAL
HAL

HAL

T3

T1

T2

FPGA

HAL-C Endpoint

Figure 1: HAL-C Model

Figure 1 shows the implementation model of HAL-C. A HAL-C realization consists of
both Waveform and JTR set-specific components.

A HAL-C component (HC) implements application functionality. These components are
written by the waveform developer and designed to the HAL-C API so that their
portability is maximized.

The JTRS Radio Sets shall implement the corresponding HAL-C API for each non-
CORBA processing element (PE). On FPGAs and other similar non-processor-based PEs,
a subset of the HAL-C functionality is available and is specified in section 2.4.2.

The API realization implemented by the platform provides an infrastructure within which
the HCs will operate. The main purpose of this infrastructure is to enable communication
between HCs that reside on the same and/or different PEs.

While this specification does not detail a transport abstraction implementation, it is useful
to describe it as a single transport module that resides in the HAL-C infrastructure,
represented as Tx. There are two types of transports to describe. The first is the Physical
Channel that connects two different PEs and facilitates the sending of data and
commands between two HCs residing on different PEs. The Physical Channel is
considered the mapping of the transport onto the hardware platform. The other type is an
internal transport implementation that is hardware platform-specific but is required to
align with the interface of the HAL-C APIs.

To simplify the connection aspect of the model, the notion of Endpoints is introduced.
The path out of a HC and through a transport module will be referred to as the Logical
Channel.

2-3

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0

2.4.1.1

2.4.1.2

2.4.1.3

2.4.1.4

An application uses the HAL-C API to access Endpoints, and to send and receive data;
the HAL-C infrastructure moves data to the specified Endpoints across the logical
channel.

2.4 HAL-C API
The HAL-C specification details how two HCs exchange data. This specification only
prescribes the transfer of raw data bits. No meaning is ascribed to the raw data. For PEs
that support a C runtime, the HAL-C API consists of 4 functions that implement
retrieving Endpoint handles, sending data to Endpoints, receiving data at endpoints, and
registering callbacks. For PEs such as FPGAs, the API consists of a data bus, as well as
associated clock and control signals. The HAL-C infrastructure and related APIs are part
of the operating environment.

2.4.1 HAL-C for Processing Elements supporting a C runtime

Description.
This section details the requirement that a non-CORBA-enabled PE with a C runtime
provide the realization of the HAL-C C API. All the functions that are part of the API are
described as well as the intended behavior of the infrastructure to support these functions.

UML.
N/A

Types.

2.4.1.3.1 HalcEndpointHandle.
The first argument of each API function is a handle. This handle is an opaque type that
identifies the intended endpoint to the infrastructure implementation. It may, for example,
be an integer that indexes into a table of hardware platform-specific data structures
containing buffer space and information about how to route data to other endpoints.

Endpoints are addressable sink (entry) and source (exit) interfaces of HC components.
These endpoints are implemented as part of the HAL-C infrastructure. Associated with
each endpoint will be data that differentiates its dataflow from other endpoints sharing
the same physical channel. The HAL-C infrastructure will be configured by an outside
agent, which will provide all endpoint information. The required information is the name
by which a component is referenced and the PE on which it is loaded.

The association of a HC to an endpoint will be through a handle returned by
halcGetEndpoint. This allows the HAL-C infrastructure to change the endpoint
information dynamically in an effort to reallocate the data flows in the system. Therefore,
each HC will be required to supply an initialized handle to the HAL-C API functions it
calls.

Attributes.
N/A.

2-4

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
2.4.1.5 Operations.
The operations of the HAL-C API will be made available to HC through a library.

2.4.1.5.1 halcGetEndpoint.
2.4.1.5.1.1 Brief Rationale.

HalcGetEndpoint will allow a HAL-C component to get a handle to the named endpoint.
This handle will then be used as an input by the other operations of the HAL-C API.

2.4.1.5.1.2 Synopsis.
halcResult HalcGetEndpoint(halcEndpointHandle* eph, char*
componentName, char* endpointName);

2.4.1.5.1.3 Behavior.

The parameters of the halcGetEndpoint operation are:
- eph is a handle to an Endpoint associated with the supplied name.
- componentName is the character string name of component
- endpointName is the character string name of endpoint.

The halcGetEndpoint operation shall match the componentName and endpointName
parameters against the configuration tables in the HAL-C infrastructure to identify the
desired endpoint.

The halcGetEndpoint operation shall place the identified endpoint handle in the location
pointed to by eph.

When later provided in a HAL-C operation, this handle is used by the infrastructure to
access the associated endpoint.

2.4.1.5.1.4 Returns.

The halcGetEndpoint operation shall return halcResult with a value of halcSUCCESS to
indicate that an endpoint was obtained.

The halcGetEndpoint operation shall return halcResult with a value of halcFAIL to
indicate that the endpoint was not obtained.

2.4.1.5.1.5 Exceptions/Errors.

This operation does not return any exceptions.

2.4.1.5.2 halcSend.
2.4.1.5.2.1 Brief Rationale.

HalcSend is a connection-oriented blocking send function and is the method by which the
components transfer data.

2.4.1.5.2.2 Synopsis.
halcResult halcSend(halcEndpointHandle eph, uint32 maxLength, uint32*
bytesSent, void* data, uint32 timeout);

2-5

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
2.4.1.5.2.3 Behavior.

The halcSend operation shall deliver up to maxLength bytes from the address specified
by data parameter to the HAL-C Infrastructure for transfer to the endpoint designated by
eph.

- eph is the handle of the endpoint to which the HAL-C Infrastructure delivers the
data.

- maxLength is the size of the data buffer.
- bytesSent is the amount of data actually sent where it’s value may be <

maxLength in the event of a timeout.
- data is the buffer where data is stored. The caller retains ownership of the data.
- timeout is the amount of time in microseconds ((2**32-1) = forever is default) that

has been allotted for successful completion of the operation.

The invoking application will receive control as soon as data has been delivered to the
HAL-C Infrastructure. Transfer of data to the endpoint will continue asynchronously.

2.4.1.5.2.4 Returns.

The halcSend operation shall return halcResult with a value of halcSUCCESS to indicate
that data has been delivered for transmission.

The halcSend operation shall return halcResult with a value of halcTIMEOUT to indicate
data had not been delivered after timeout microseconds.

2.4.1.5.2.5 Exceptions/Errors.

This operation does not return any exceptions.

2.4.1.5.3 halcReceive.
2.4.1.5.3.1 Brief Rationale.

HalcReceive is a connection-oriented blocking receive function.

2.4.1.5.3.2 Synopsis.
halcResult halcReceive(halcEndpointHandle eph, uint32 maxLength,
uint32* bytesReceived, void* data, uint32 timeout);

2.4.1.5.3.3 Behavior.

The halcReceive operation shall block until data is available or a timeout occurs.

The halcReceive operation shall transfer up to maxLength bytes of data to the address
specified by the input parameter, data.

The halcReceive operation shall return the output parameter, bytesReceived, with a value
indicating the number of bytes transferred.

- eph is the handle of the endpoint from which to receive data.
- maxLength is the size of the data buffer.
- bytesRecieved is the amount of data actually received.
- data is the buffer where data is stored. The caller retains ownership.
- timeout is the amount of time in microseconds ((2**32-1) = forever is default) that

has been allotted for successful completion of the operation.

2-6

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
The halcReceive operation shall not transfer data from its buffer if the length of data
available for transfer is greater than maxLength,.

2.4.1.5.3.4 Returns.

The halcReceive operation shall return halcResult with a value of halcOVERFLOW to
indicate that the data to be transferred is longer than maxlength.

The halcReceive operation shall return halcResult with a value of halcTIMEOUT if the
operation is not completed within the time specified by the input parameter timeout.

The halcReceive operation shall not return halcResult with a value of halcTIMEOUT if
the input parameter timeout has a value of 0.

2.4.1.5.3.5 Exceptions/Errors.

This operation does not return any exceptions.

2.4.1.5.4 halcRegisterCallback.
2.4.1.5.4.1 Brief Rationale.

The callback function will provide the facility for the infrastructure to send data to a
component without the component blocking on a receive call. The data will arrive from a
specific endpoint or get generated by some other means within the implementation of the
infrastructure, i.e., events, errors, etc.

2.4.1.5.4.2 Synopsis.
typedef void (*halcCallback)(void* token, halcResult status, uint32
length, void* data);

halcResult halcRegisterCallback(halcEndpointHandle eph, halcCallback
cb, void* token, uint32 timeout);

2.4.1.5.4.3 Behavior.

The halcRegisterCallback operation shall register the function designated by the input
parameter halcCallback with the Endpoint designated by eph.

If input parameter halcCallback is null, the halcRegisterCallback operation shall
deregister any callback associated with the endpoint designated by eph.

- eph is the handle of the endpoint on which to perform the operation.
- cb is the callback function pointer.
- token is a label that enables the callback function to locate relevant data

structures.
- timeout is the amount of time in microseconds ((2**32-1) = forever is default) that

has been allotted for successful completion of the operation.

2.4.1.5.4.4 Returns.

The halcRegisterCallback operation shall return halcResult with a value of halcSUCCESS
to indicate that the halcCallback has been registered.

The halcRegisterCallback operation shall return halcResult with a value of halcFAIL to
indicate that the halcCallback has not been registered.

2-7

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0

2.4.1.6

2.4.2.1

2.4.1.5.4.5 Exceptions/Errors.

This operation does not return any exceptions.

HAL-C Infrastructure Behavior
The HAL-C Infrastructure provides the hardware platform-specific realization of the
HAL-C APIs and performs the data transfer to endpoints. The HAL-C Infrastructure
moves data it receives to the specified endpoint and performs the appropriate actions
when callbacks have been registered.

Upon receipt of data from the halcSend operation, the HAL-C Infrastructure shall transfer
the data to the specified endpoint.

The HAL-C infrastructure shall invoke the registered Callback function with the
parameter halcResult set to halcTIMEOUT if the registered timeout interval has elapsed
since the last data arrived.

Upon receipt of data at an endpoint where a callback has been register, the HAL-C
infrastructure shall invoke the registered Callback function.

2.4.2 HAL-C for FPGAs

Description
The SCA defines two interface types: a “provides” port that provides a service, and a
“uses” port, which uses that service. This concept will be extended inside the FPGA to
the component level – a component is provided data from the HAL-C infrastructure using
its provides port, and “uses” the HAL-C infrastructure to provide data to another
component via its uses port (or endpoint). In an FPGA context, we will use the terms
source and sink to define the SCA port equivalent within this document.

 “Source” interfaces are used to pass data from the HAL-C component to the HAL-C
infrastructure, which will route information to the appropriate component based upon
hardware platform implementation decisions.

 “Sink” interfaces accept data driven to the HAL-C component from the HAL-C
infrastructure.

The HAL-C API expects the HAL-C components to provide or accept data over a
common interface. On the FPGA this interface takes the form of a specification of a set
of wires and signals.

The Source interface shall output the following signals:
- clock – All signaling on this interface is synchronous to this clock.
- data – This bus is used to carry payload data. Data bus width will be defined later.
- channel –This bus defines the logical channel number associated with a data

transfer.
- length – This bus defines the length in words of the data buffer to be transferred. A

size of MAXBUFFERSIZE indicates that data is to be constantly streamed.
- write – Asserted to transfer data on the data field.

2-8

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0

definitions:

- socketRequest – This MAXSOURCESOCKETS-wide vector indicates that a
specific HAL-C logical channel interface is requesting access to the sink logical
channel.

The Sink interface shall receive the Source output signals.

The Source interface shall transfer a block of data of size indicated by the length signal.

The Sink interface shall receive data, the size of which is indicated by the length signal.

The Sink interface shall output the following signal:
- socketReady – This MAXSINKSOCKETS-wide vector contains a flow

control signal from each Sink interface accepting data from the Source
interface.

The source interface shall receive the socketReady signal.

The Source interface is the hardware equivalent of halcSend; The Sink interface is the
hardware equivalent of halcReceive. The following figures detail the interface

socketReady
socketRequest

Source
Interface

clock
data
channel
length
write

Figure 2: Source Interface Definition

socketReady
socketRequest

Sink
Interface

clock
data
channel
length
write

Figure 3: Sink Interface Definition

For the FPGA implementation, there is not a concept of the halcGetEndpoint or
halcCallback functions. The initialization of the endpoints will be accomplished through
the HAL-C infrastructure. In keeping with the signal definitions, the HAL-C
Infrastructure shall supply the HC with the logical channel number (handle) to use.

2-9

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0

2.4.2.2

2.4.2.3

It is permissible and expected that all unused signals will be removed during
optimization.

HAL-C Infrastructure Behavior
Because FPGAs do not have an equivalent to the halcGetEndpoint and halcCallback
functions, this information is specified as part of preparing the FPGA load. In order for
an application to receive the address of an endpoint, an HC component shall reserve
register locations that will allow the infrastructure to store the each endpoint’s logical
channel number as a 32bit integer. This register’s address and other access information
would then be described as part of the application documentation.

FPGA Layout
An FPGA is a programmable hardware device, and as such, functional components
within an FPGA are interconnected through direct wire connections or bus architectures.
Connections between HAL-C and the Endpoints within waveform components can be
made during the generation of the load map or treated the same as external connections.
External connections between an FPGA and other PEs will be completed through the
HAL-C configuration done at load time.

This means that the internal architecture of an FPGA image containing multiple
functional components can be thought of as a number of smaller discrete FPGAs
interconnected through external transport mechanisms. This concept is illustrated in the
following figure:

Source Component
2

Component
1

External
Transport

2

External
Transport

3

External Transport 1

Source
Source

Sink

Sink
Sink

Sink

Source

Source

Source

Source

Sink

Sink

Sink

FPGA Image

Internal
Transport

Figure 4: FPGA Layout

2-10

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
2.4.2.4

2.4.2.5

2.4.2.6

Flow Control
During a typical data transfer, the Source interface asserts a socketRequest signal to gain
access to the Sink interface. When the Sink interface is ready, the sink interface asserts a
socketReady signal. The Source interface then asserts a write signal, and on the next
clock edge, the first data word, channel number, and buffer length are transferred to the
sink interface, and the length is decremented. On subsequent clock edges, the source
interface transmits additional data words, and decrements the length until all data words
are transferred. The source interface de-asserts the write and socketRequest, following the
transfer of the last data word in the buffer. The sink interface de-asserts the socketReady
following the transfer of the last data word in the buffer.

The Sink endpoint de-asserts socketReady at any time to interrupt the data transfer. This
could be done to service a socketRequest from a higher priority Source endpoint, or to
maintain flow control accounting for discrepancies in the data bus width.

Overall, this scheme assumes that the Sink endpoint consumes data from the Source at a
rate greater than or equal to the rate at which the Source is sending data.

For those cases where the socketReady/socketRequest handshaking overhead is
unacceptable, data can be constantly streamed, without any handshaking. If the length
vector is set to MAXBUFFESIZE then the handshaking shall be disabled. It will be the
function of the waveform component to assure that the data is consumed at an appropriate
rate.

On interfaces supporting multiple channels per transport, the HAL-C component will
invoke the appropriate socketReady/socketRequest handshaking operations.

Data bus width
The sink interface shall support the following data bus widths: 1, 8, 16, 32, 64 bits.

Translation between disparate data bus types is accommodated through translation
components in the HAL-C infrastructure, which will map the word sizes, pack or unpack
data, and change endian-ness, as appropriate. Any necessary translation components will
be provided during the porting/integration effort by the platform vendor.

HAL-C Components
Figure 5 shows one possible architecture of a HC component. The figure shows the use of
multiple endpoints for one waveform component, the separation of control and data, and
unidirectional endpoints.

2-11

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0

Figure 5: An HC Implementation

3 OS SERVICE APIS FOR DSP ENVIRONMENT

3.1 PURPOSE AND SCOPE
This section defines common Operating System (OS) Services, based upon a POSIX
AEP subset extracted from the SCA POSIX AEP. These common services will be
implemented across all SCA Digital Signal Processing (DSP) implementations. There is
an obvious tradeoff between the robustness of the set of chosen APIs and the complexity
required to provide an implementation for those APIs in the DSP environment.

The approach taken to establish a composite list of implementable OS APIs for the DSP
environment is:

1. Identify high-priority services based upon their operational benefit.

2. Consider those additional services related to the SCA POSIX AEP profile.

3. Filter for redundancies and for availability in common DSP libraries.

DSP environments vary in supported OS APIs and overall service capabilities. There
presently exists no common API set, similar to SCA POSIX AEP subset for GPPs, that
establishes a commonly supported interface for all components within the DSP
environment. The logical selection of the SCA POSIX AEP APIs as a starting point, and
the subsequent mapping of that API set to a baseline set of commonly existing DSP OS
APIs, establishes a fundamental set of DSP OS services that are realistic to implement as
part of a real-time signal processing environment. The set of APIs initially required has
been largely limited to functionality commonly provided as part of many contemporary
DSP operating systems. Requiring a larger set of APIs beyond such common functions
would likely impose a substantial software development effort (e.g. File Services are not
presently part of most DSP OSs, so mandating an implementation of DSP File Services
could impose a great burden on hardware platform developers). Also, the features of

3-1

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
HAL-C were considered in the selection of functions that support inter-process
communication.

Modem
WF DSP

DSP OS Services

GPP
WF GPP

GPP OS Services
RF IO

JTRS HW Platform

WF FPGA
WF FPGA

Modem
WF DSP

DSP OS Services

GPP
WF GPP

GPP OS Services
RF IO

JTRS HW Platform

WF FPGA
WF FPGA

Figure 6: OS Services

3.2 OS SERVICE APIS FOR DSP ENVIRONMENT REQUIREMENTS
The initial review of POSIX APIs identified the following areas as candidates for DSP
operating system standardization.

• C-Runtime Library Support

• A simple hardware interrupt structure

• Simple message passing (POSIX.1b- Message Passing)

• Multi-threaded support (POSIX.1c Threads)

• Software timers (POSIX.1b-Timers)

Appendix E: SCA Application Environment Profile for Digital Signal Processors defines
the functions and options designated as mandatory. These functions are provided by the
DSP. Waveform applications can assume these functions will be provided.

The complete list of functions is specified in Appendix E. The following tables identify
the applicable portions of the POSIX standard from which these functions were selected.

Table 1: Required Standards
Standard DSP AEP
C Standard (ISO/IEC 9899:1990) PRT
POSIX.1 (ISO/IEC 9945 -1):1996 PRT
POSIX.1b (ISO/IEC 9945 -1):1996 PRT
POSIX.1c (ISO/IEC 9945 -1):1996 PRT
POSIX.5b (IEEE 1003.5 - 1992) OPT

NOTE:
PRT Partial, only the subset or options or Units of Functionality called out in A.3.
MAN Mandatory, complete with all options.
OPT Optional, may be included in the environment.

Table 2 contains the required options, limits, and any other constraints on POSIX.1b.

3-2

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
Table 2: POSIX.1b Option Requirements
 DSP AEP
{_POSIX_ASYNCHRONOUS_IO} NRQ
{_POSIX_MAPPED_FILES} NRQ
{_POSIX_MEMLOCK} NRQ
{_POSIX_MEMLOCK_RANGE} NRQ
{_POSIX_MEMORY_PROTECTION} NRQ
{_POSIX_MESSAGE_PASSING} NRQ
{_POSIX_PRIORITIZED_IO} NRQ
{_POSIX_PRIORITY_SCHEDULING} NRQ
{_POSIX_REALTIME_SIGNALS} NRQ
{_POSIX_SEMAPHORES} MAN
{_POSIX_SHARED_MEMORY_OBJECTS} NRQ
{_POSIX_SYNCHRONIZED_IO} NRQ
{_POSIX_TIMERS} MAN
{_POSIX_FSYNC} NRQ

NOTE:
NRQ Not required for this profile.
MAN Mandatory for this profile.

Table 3 contains the required options, limits, and any other constraints on POSIX.1c.

Table 3: POSIX.1c Option Requirements
Option DSP AEP
{_POSIX_THREADS} MAN
{_POSIX_THREAD_ATTR_STACKADDR} NRQ
{_POSIX_THREAD_ATTR_STACKSIZE} MAN
{_POSIX_THREAD_PRIO_INHERIT} NRQ
{_POSIX_THREAD_PRIO_PROTECT} NRQ
{_POSIX_THREAD_PRIORITY_SCHEDUL
ING}

MAN

{_POSIX_THREAD_PROCESS_SHARED} NRQ
{_POSIX_THREAD_SAFE_FUNCTIONS} MAN

NOTE:
NRQ Not required for this profile.
MAN Mandatory for this profile.

The DSP development environment shall provide the functions and options designated as
mandatory by the SCA AEP for Digital Signal Processors defined in Appendix E. An OS
or services library may provide functions and options in addition to those designated as
mandatory by the profile.

Application components (software which executes a subset of total waveform
functionality) running on a DSP shall be limited to using the DSP OS services that are
designated as mandatory by the SCA AEP for Digital Signal Processors.

HAL-C infrastructures are not restricted to using the services designated as mandatory by
the AEP as specified and defined in Appendix E.

3-3

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0

4 WAVEFORM FUNCTIONAL BLOCKS

4.1 PURPOSE AND SCOPE
This section identifies Waveform Functional Blocks (WFB) to be made available on all
SCA-compliant Special Hardware Components (e.g., DSPs & FPGAs). JTR Set
acquisitions will include the functions prescribed by these WFBs. They need not be
included as part of a waveform, but will be available in a library for use on each JTR set.

WFBs are not equivalent to SCA or HAL-C components. WFBs are simple functions that
may be included in a component much like a library module. Components are
aggregations of software units that are deployable and that conform to requirements
specified by the component architecture.

JTRS set acquisitions will require that an Executable Implementation Independent Model
(IIM) (see the Acquisition Guidance to the JTRS Software Communication Architecture
(SCA) Specification section 3.2.2) be generated for each WFB. An Executable
Specification is an executable model in a higher order language. The test vectors and test
results will be made available with the Executable Specification to validate correct
implementation of the WFB across hardware platforms.

4.2 STANDARD MODULATION BLOCKS
The following Waveform Functional Blocks (for modulation) will be made available on
SCA-Compliant Special Hardware Components (e.g., DSPs & FPGAs):

 CCSK Cyclic Code Shift Keying.

 CPM Continuous Phase Modulation

Waveform Applications need not provide these functions as part of the Waveform
Application.

4.2.1 Cyclic Code Shift Keying
Figure 7 describes the interfaces for Cyclic Code Shift Keying. Implementation of these
interfaces will be realized differently depending upon whether the processing element is a
DSP or FPGA.

CCSK – Cyclic Code Shift Keying

CCSK Encoder 32 Bit word5 Bit Byte

CCSK Decoder 5 Bit byte32 Bit word

Figure 7: Cyclic Code Shift Keying

4-1

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
4.2.2 Continuous Phase Modulation

Figure 8 describes the interfaces for Continuous Phase Modulation. Implementation of
these interfaces will be realized differently depending upon whether the processing
element is a DSP or FPGA.

• Input Data Type {integer}

• M_ary Number
• Modulation Index
• Frequency Pulse Shape

{Rectangular,
Raised Cosine,
Spectral Raised Cosine

•Roll off
Gaussian

•BT Product
Tamed FM}

• Samples per Symbol

Controls

Input

D/A Analog Data

CPM – Continuous Phase Modulation

CPM

Figure 8: Cyclic Continuous Phase Modulation

4.3 Standard Coding Blocks
Forward Error Correction (FEC) coding blocks can be used to improve the noise
immunity. Turbo Code and Reed-Solomon block codes may also include interleaving to
improve burst noise immunity.

The following standard Waveform Functional Blocks will be made available on SCA-
Compliant Special Hardware Components (e.g., DSPs & FPGAs):

 Turbo Encoder/Decoder Turbo Code.

 Reed Solomon Encoder/Decoder Reed-Solomon Encoder/Decoder Block Code.

 Convolutional Encoder Convolutional Code.

 Viterbi Decoder Viterbi Code.

Waveform Applications need not provide these functions as part of the Waveform
Application.

4-2

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
4.3.1 Turbo Encoder/Decoder
Figure 9 describes the interfaces for Turbo Encoder/Decoder. Implementation of these
interfaces will be realized differently depending upon whether the processing element is a
DSP or FPGA.

Turbo
Encoder/Decoder

Decoded /
Coded Data

Turbo Encoder-Decoder

8 bits at a time

Input

• Encoded / unencoded Data
8 bits at a time {integer}

Controls

• Code Rate
• Block Length (Interleaver size)
• Code type
• Puncturing
• Number of Decoder Iterations

Figure 9: Turbo Encoder/Decoder

4.3.2 Reed-Solomon Encoder-Decoder
Figure 10 describes the interfaces for Reed-Solomon Encoder-Decoder. Implementation
of these interfaces will be realized differently depending upon whether the processing
element is a DSP or FPGA.

4-3

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0

Reed-Solomon
Encoder/Decoder

Decoded /
Coded Data

Input
•En / unencoded Data
8 bits at a time

{integer}

RSED - Reed-Solomon
Encoder-Decoder Block Code

8 bits at a time

• Codeword Length
• Message Length
• Primitive Polynomial
• Generator Polynomial
• Correction Power

Controls

Figure 10: Reed-Solomon Encoder-Decoder

4.3.3 Convolutional Encoder

Figure 11 describes the interfaces for Convolutional Encoder. Implementation of these
interfaces will be realized differently depending upon whether the processing element is a
DSP or FPGA.

Convolutional
Encoder

Coded Data

Convolutional Encoder

• Unencoded Data
{integer}

Input

• Code Rate {# inputs / # outputs }
• Constraint Length
• Number of States
• Trellis Description

• Polynomial Description
• Feedback Polynomial

Controls

Figure 11: Convolutional Encoder

4-4

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
4.3.4 Viterbi Decoder

Figure 12 describes the interfaces for the Viterbi Decoder. Note: the Viterbi Decoder is
usually used to decode Convolutional Encoded data. Implementation of these interfaces
will be realized differently depending upon whether the processing element is a DSP or
FPGA.

• Traceback Depth
• Decision Type
• Trellis Description

• Polynomial Description
• Feedback Polynomial Description

Controls

Viterbi
Decoder

Decoded Data
Input

• Encoded Data
{integer}

Viterbi Decoder

Figure 12: Viterbi Decoder

4.4 WAVEFORM FUNCTIONS FOR POTENTIAL STANDARDIZATION
The initial selection of Waveform Functional Blocks was limited to only those functions
that were clearly used in several waveforms. The selection was conservative in order to
avoid unnecessarily burdening JTR set developers in implementation of operating
environments for DSP and FPGA processing elements.

Implementation of this initial set of common WFBs will provide a cost and benefit basis
for determining whether additional WFBs should be standardized. The functionality
found in existing waveforms (see Table 4 and Table 5) was the basis for the initial set of
common WFBs and could provide additional candidate WFBs for future standardization.

4-5

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
Table 4: Standard Modulation Blocks

Modulation FPGA DSP

 WNW LPI CCSK

LINK-16

 UHF SATCOM 181 CPM

 WNW BEAM

PSK UHF SATCOM 181

BPSK UHF SATCOM 183

OQPSK UHF SATCOM 183

DQPSK WNW OFDM

DOQPSK WNW AJ

SOQPSK UHF SATCOM 182 & 183

D16PSK WNW OFDM

FSK SINCGARS (CPFSK) All but
Analog Voice

UHF SATCOM 181

FM SINCGARS SCPT Analog
Voice

ASK HAVEQUICK

Table 5: Standard Coding Blocks

 FPGA DSP

WNW BEAM Turbo Code

 WNW OFDM

 UHF SATCOM 181

 WNW OFDM

 WNW AJ

 WNW LPI

RSED

LINK-16 RS(32,15)
RS(16,7)

 UHF SATCOM 181,
182, & 183

Viterbi

 WNW AJ

4-6

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
Additional waveform functional blocks that are candidates for standardization include:

PSK Phase Shift Keying. For Non-DAMA UHF SATCOM 181, includes
all BPSK and QPSK Modulations.

 BPSK Binary Phase Shift Keying.

 OQPSK Offset Quadrature Phase Shift Keying.

 DQPSK Differentially Encoded QPSK.

 DOQPSK Differentially Encoded Offset QPSK.

 SOQPSK Shaped Offset QPSK.

 D16PSK Differentially Encoded 16-ary Phase Shift Keying.

 FSK Frequency Shift Keying.

FM Frequency Modulation.

ASK Amplitude Shift Keying.

4-7

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0

5 ANTENNA SUBSYSTEM API

5.1 PURPOSE AND SCOPE
This specification defines the Antenna Subsystem API that supports antenna control and
status reporting. This API accommodates the characteristics associated with various
antenna types such as directional, phased array, and smart antennas. These antennas are
used for radio systems that include airborne, maritime, ground-mobile, and ground-fixed
applications, as well as radios capable of 2 GHZ and above.

Extension of this antenna API will foster software portability, deployment, reuse of
antenna subsystems, and assist in allowing modular upgrades of antenna subsystem
technology. It also facilitates efficient partitioning of the antenna control function
implementation among GPPs, the signal processing subsystem, and the antenna
subsystem in radio systems that require real-time antenna control.

Several sections of the OMG Software Radio Submission dtc/04-05-04 formed a basis for
developing real time antenna control/status reporting APIs. Material was included from
the following dtc/04-05-04 sections:

• Communication Equipment (8.2) – Identifies antenna I/O.
• Antenna (8.2.6.4.1) – Identifies antenna I/O device.
• Physical Layer Facilities (9.5.2) – Identifies physical layer functions.

5.2 ANTENNA API
Antennas will require an interface to control and report different aspects of their design.
Examples of real-time control and status reporting interface functions for “complex”
antenna subsystems that currently exist in radio systems include:

• Antenna pointing commands to the antenna subsystem. Variants in this category
include antenna-positioning commands (each axis) or directional pointing
command of a phased array antenna embedded beam steering processor.
Allowances for timing latency and jitter are also included in the interface
requirements and are dependant on the dynamics of the radio set hardware and
the link far-end radio set.

• Antenna subsystem status data necessary for antenna control. The data returned is
dependent on the antenna type. Examples include rate sensor outputs and servo
position feedback.

• Antenna subsystem status data from “smart” antennas, e.g., those that employ
adaptive nulling processing in the antenna subsystem.

• Provisions for simultaneous operations with multiple antennas and multiple
waveforms.

• Provisions for dynamic switching of the active transmit and/or receive antenna
while maintaining communications.

5-1

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
These functions are more common in radios that have frequency response above 2 GHz
and require antennas with directivity.

5.2.1 Antenna Control API
As shown in Figure 13 the Antenna API is positioned between the Antenna device and
waveform or radio system services communicating with the Antenna. A common API is
provided to these waveforms and services. The device transforms the data to the formats
expected by the antenna and communicates with the antenna via a device driver. Figure
13 also shows that some control information is passed through the modem synchronized
with the data transfer (see section 5.2.3).

Figure 13: Positioning of Antenna API

The Antenna Control API depicted in Figure 14 and described in this section has been
registered as a JTRS API. Future JTRS acquisitions are required to use this API and to
submit Change Proposals for any necessary corrections or extensions.

5-2

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0

IODevice antennaType

description
frequency

radiationPattern

minRadiationPattern
maxRadiationPattern
currentRadiationPattern
beamWidth antennaOrientation

Heading
Pitch
Roll
currentPointingCoordinates
currentPolarization
boresight
currentCalibration
elevationOffset
azimuthOffset
crossElevationOffset

Antenna
VSWR
theBlockageArea (blockageArea)
theAmplifierSettings (amplifierSettings)
orientation (antennaOrientation)
theAntennaSettings (antennaSettings)
radiationInformation (radiationPattern)
antennaType (antennaType)
elementInformation (radiatingElement)

0..*

1

blockageArea

minAz
maxAz
minEl
maxEl

specializedControl

ephemerisInformation
resetList
MHzReferenceLink
receiveIF
transmitIF

radiatingElement

elementType
positionInAntenna
Active
radiationPattern
currentCalibration
currentPointingCoordinates

amplifierSettings

transmitEnable
maxPower
minPower

antennaSettings
polarizationCapablity
operationalMode
BITResults
minAzimuth
maxAzimuth
minElevation
maxElevation
trackingMethod

consists of

1

1 1

1

111

consists of
consists of

consists of

consists of
consists of

consists of

consists of

0..1 0..1

0..1

0..1
0..1

0..1

0..1

Figure 14: Antenna Command and Control UML diagram

blockageArea defines the null area of the antenna. There may be zero or one area with
the following values:

minAz float, minimum azimuth in radians
maxAz float, maximum azimuth in radians
minEl float, minimum elevation in radians
maxEl float, minimum elevation in radians

amplifierSettings define the transmission power and mode of the antenna. An antenna
may recognize at most one power range with the following values:

maxPower float, maximum power in decibels (dBm)
minPower float, minimum power in decibels (dBm)

The mode of the antenna will be defined as follow:
transmitEnable enumeration (notEnabled, receive, transmit, both)

5-3

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0

antennaOrientation defines the all aspects of the “pointing” of the antenna. There may
be zero or one orientation with the following values:

heading integer, direction of platform in degrees
pitch integer, in degrees, the angle bow above stern
roll integer, in degrees, the angle right wing above left
currentPointingCoordinates float, direction (xyz) antenna is pointing from platform

in radians
currentPolarization enumeration (horizontal, vertical, lefthand, righthand)
boresight integer, pointing adjustment in degrees
currentCalibration integer, pointing adjustment in degrees
elevationOffset integer, pointing adjustment in degrees
azimuthOffset integer, pointing adjustment in degrees
crossElevationOffset integer, pointing adjustment in degrees

antennaSettings defines the antenna capabilities and an overall indication of BIT results.
There may be zero or one antennaSettings with the following values:

polarizationCapability boolean, yes / no
operationalMode enumeration
BITResults boolean, pass /fail
minAzimuth float, minimum azimuth in radians
maxAzimuth float, maximum azimuth in radians
minElevation float, minimum elevation in radians
maxElevation float, minimum elevation in radians
trackingMethod enumeration

radiationPattern defines the range of radiating patterns and the 3 dB beam width. There
may be zero or one radiationPatterns with the following values:

minRadiationPattern enumeration
maxRadiationPattern enumeration
currentRadiationPattern enumeration
beamWidth float, 3 dB beam width in radians

antennaType provides a description of an antenna and gives the minimum and maximum
frequencies that the antenna supports with the following values:

description string
frequency float, minimum and maximum in Hz

5-4

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
radiatingElement defines the aspects of a radiating element of a phased array. There
may be zero or many radiatingElements with the following values:

elementType enumeration (helix, flatpannel…..)
positionInAntenna integer, position (xyz) coordinates in 100ths of meters
active boolean, on/off
radiationPattern radiationPatternType
currentCalibration float, pointing adjustment in radians

currentPointingCoordinates float, direction (xyz)
antenna is pointing from platform in radians

specializedControl defines additional controls related to satellite communications. There
may be zero or many Specialized Control with the following values:

ephemeris information octets, 2 words specifying satellite position
resetList array of enumerations indicating components to be

reset
MHzReferenceLink reference signal power level
receiveIF receive IF signal power level
transmitIF transmit IF signal power level

Implementers building the antenna constructs would implement the pieces needed to
fulfill the specific radio set and waveform requirements. API aggregate class-types not
needed for the radio set or waveform do not have to be instantiated.

5.2.2 SCA Device Support for Antenna Control API
There are SCA Device operations that support common Device functionality and would
be used as part of an Antenna API. Extractions from the SCA (these are not new
requirements) describing these operations and their use follow:

“Stop - The stop operation is provided to command this Antenna to stop
internal processing. The stop operation shall disable all current operations
and put the Antenna in a non-operating condition. Subsequent configure,
query, and start operations are not inhibited by the stop operation.

Start - The start operation is provided to command this Antenna to start
internal processing. The start operation puts the Resource in an operating
condition.

RunTest - The runTest operation initiates the tests in the Antenna
subsystem. This allows Built-In Test (BIT) to be implemented and
provides a means to isolate faults (both software and hardware) within the
system.”

Synopsis.

void runTest(in unsigned long testId, inout Properties testValues)raises
(UnknownTest, UnknownProperties);

5-5

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0
The runTest operation shall use the testId parameter to determine which of
its predefined test implementations should be performed. The testValues
parameter CF Properties (id/value pair(s)) shall be used to provide
additional information to the implementation-specific test to be run. The
runTest operation shall return the result(s) of the test in the testValues
parameter.”

5.2.3 Real-Time Antenna Control API
In addition to the antenna control API, some control information can be provided in
synchronization with the data. This control information will need to be sent with the data
since the user API might not be fast enough. This information is typically sent to the
antenna directly from the modem so that it can be properly integrated with data
transmittal or reception. Examples of Real-Time Control data for antennas are provided
for information:

UpLink
antennuatorAdjustment integer, number of dB adjustment
highFrequencyInhibit boolean, normal/inhibit
pingPongSwitch boolean, noswitch/switch
hopControl integer, rate and frequency

DownLink
antennuatorAdjustment integer, number of dB adjustment
switchBandwithFilter enumeration of selectable filters
pingPongSwitch boolean, noswitch/switch
hopControl integer, rate and frequency

receiveSignalStrength integer, to control antenna gain

5-6

JTRS-5000 SHS
Specialized Hardware Supplement

 rev. 3.0

APPENDIX A: HAL-C API

enum halcResult {halcSUCCESS = 0,

halcFAIL,
halcTIMEOUT,
halcOVERFLOW};

halcResult
halcGetEndpoint(

halcEndpointHandle* eph, char* componentName,
char* endpointName);

halcResult
halcSend(

halcEndpointHandle eph, uint32 maxLength,
uint32* bytesSent, void* data, uint32 timeout);

halcResult
halcReceive(

halcEndpointHandle eph, uint32 maxLength,
uint32* bytesReceived, void* data, uint32 timeout);

typedef
void (*halcCallback)(

void* token,
halcResult status,
uint32 length,
void* data);

halcResult
halcRegisterCallback

(halcEndpointHandle eph, halcCallback cb,
void* token, uint32 timeout);

A-1

	INTRODUCTION
	SCOPE OF SPECIALIZED HARDWARE SUPPLEMENT
	REFERENCE DOCUMENTS

	HAL CONNECTIVITY (HAL-C)
	DEFINITIONS
	SCOPE OF HAL-C
	HAL-C MODEL
	HAL-C API
	HAL-C for Processing Elements supporting a C runtime
	Description.
	UML.
	Types.
	HalcEndpointHandle.

	Attributes.
	Operations.
	halcGetEndpoint.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	halcSend.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	halcReceive.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	halcRegisterCallback.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	HAL-C Infrastructure Behavior

	HAL-C for FPGAs
	Description
	HAL-C Infrastructure Behavior
	FPGA Layout
	Flow Control
	Data bus width
	HAL-C Components

	OS SERVICE APIS FOR DSP ENVIRONMENT
	PURPOSE AND SCOPE
	OS SERVICE APIS FOR DSP ENVIRONMENT REQUIREMENTS

	WAVEFORM FUNCTIONAL BLOCKS
	PURPOSE AND SCOPE
	STANDARD MODULATION BLOCKS
	Cyclic Code Shift Keying
	Continuous Phase Modulation

	Standard Coding Blocks
	Turbo Encoder/Decoder
	Reed-Solomon Encoder-Decoder
	Convolutional Encoder
	Viterbi Decoder

	WAVEFORM FUNCTIONS FOR POTENTIAL STANDARDIZATION

	ANTENNA SUBSYSTEM API
	PURPOSE AND SCOPE
	ANTENNA API
	Antenna Control API
	SCA Device Support for Antenna Control API
	Real-Time Antenna Control API

	APPENDIX A: HAL-C API

